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Abstract—A novel balanced electroabsorption modulated pho-
tonic link for simultaneous suppression of even-order distortions,
third-order distortions, laser relative intensity noise (RIN), and
common amplified spontaneous emission noise at the same modu-
lator bias point was experimentally demonstrated for the first time.
By biasing the balanced electroabsorption modulator at the third-
order null, the third-order distortions were suppressed, while the
balanced link architecture suppressed all even-order distortions
and common mode noises. The fabricated balanced electroabsorp-
tion modulator (B-EAM) showed well-matched dc characteristics
in terms of – and transfer curve. System experiments were per-
formed to compare Single-EAM and B-EAM links. In the B-EAM
link, 2-dB suppression of laser RIN and 20-dB improvement in spu-
rious free dynamic range over the single-EAM link were observed.

Index Terms—Balanced fiber-optic links, distortion suppres-
sion, electroabsorption modulator, intermodulation distortion,
microwave photonics, relative intensity noise suppression.

I. INTRODUCTION

DUE TO THE benefits of optical fiber (low loss, electro-
magnetic immunity, light weight, and ultrawide band-

width), microwave photonic links are attractive for applications
in antenna remoting, optical control of phased array antennas,
fiber-radio, and cable television distribution. These applications
possess stringent requirements in terms of link gain, noise
figure (NF), and spurious free dynamic range (SFDR). To meet
these demands, external intensity modulated direct detection
links have been employed. Among these, balanced links are
attractive due to their ability to simultaneously improve SFDR
and NF by suppressing all even-order distortions, laser relative
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intensity noise (RIN), and common amplified spontaneous
emission (ASE) noise. Shot-noise-limited performance can be
achieved and, therefore, with increasing laser power, link gain
and NF improve dramatically [1]–[3].

Conventional balanced links employ LiNbOcross-coupled
Mach–Zehnder modulators (X-MZM). The X-MZM must be bi-
ased at quadrature to enable balanced outputs (equal dc inten-
sities and 180out-of-phase modulated signals). Due to the si-
nusoidal behavior of its transfer curve, operating the X-MZM
in balanced mode suppresses the second-order distortions, but
maximizes the third-order distortions. Although system perfor-
mance improves in terms of NF due to laser RIN suppression,
the third-order distortions remain and limit the SFDR.

As a solution to this dilemma, we propose a novel balanced
electroabsorption modulated photonic link which simulta-
neously suppresses laser RIN, common ASE noise, and all
even-order distortions independent of the applied bias, as well
as nulling of the third-order distortions. Electroabsorption mod-
ulators (EAMs) are attractive due to their small size, ultrawide
bandwidth [4], low [5], and their ability to be integrated
with semiconductor optical amplifiers (SOAs) and distributed
feedback (DFB) lasers [6]. Much effort has been focused on
linearizing the EAM transfer curve. The developed techniques
include electronic predistortion [7], distortion emulation and
reversal [8], feed-forward compensation [9], RF current mod-
ulation [10], exploitation of the wavelength dependence of the
quantum-confined Stark shift [11], dual-EAM approach [12],
tailoring of the absorption coefficient along the propagation
direction [13], and linearly combining the Franz–Keldysh and
quantum-confined Stark effects [14], but these techniques
cannot simultaneously suppress laser RIN or common ASE
noise.

Previously, we experimentally demonstrated a monolithically
integrated balanced electroabsorption modulator (B-EAM)
[15], and theoretically analyzed the B-EAM link performance
in terms of NF and SFDR [16]. In this paper, we experimentally
demonstrate improvements in the B-EAM device character-
istics and, for the first time, simultaneously suppress RIN,
second-order distortions, and third-order distortions at the same
bias point.

The paper is organized as follows. Section II explains the
device operating principle, structure, and fabrication, and Sec-
tion III describes our balanced link test bed and reports on some
experimental results.
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Fig. 1. B-EAM. (a) Device schematic. (b) SEM of a fabricated B-EAM. The
B-EAM consists of a pair of EAMs monolithically integrated with a CPW
transmission line on SI–InP. The center conductor connects the p-contact of
the upper EAM to the n-contact of the lower EAM.

Fig. 2. Device principle: dc bias is applied in series, while the RF signals feed
the center conductor. The B-EAM outputs are balanced independent of dc bias.

II. B-EAM

A. Device Structure and Link Operating Principle

Fig. 1 depicts the schematic structure and scanning electron
micrograph (SEM) of a fabricated B-EAM, which consists of
a pair of pin waveguide EAMs monolithically integrated with
a coplanar waveguide (CPW) transmission line on semi-insu-
lating (SI) InP. The center conductor connects the p-contact of
the upper EAM to the n-contact of the lower EAM. To operate
the device in balanced mode (Fig. 2), dc bias is applied be-
tween the two ground electrodes of the CPW, and the RF sig-
nals are applied between the center conductor and ground elec-
trodes via a custom CPW probe with an integrated dc block
and dc biasing terminal. Unlike the X-MZM, the outputs of the
B-EAM are always balanced, independent of the bias voltage.

Due to this unique ability, we may leverage on the balanced
link’s ability to suppress laser RIN, common ASE noise, and
all-even order distortions without placing any restrictions on the
modulator’s bias point. Therefore, a balanced electroabsorption
modulated photonic link can simultaneously suppress laser RIN,
common ASE noise, all even-order distortions, and third-order
distortions. Shot-noise-limited performance, ultralow NF, and
fifth-order distortion limited SFDR can be simultaneously at-
tained.

B. Device Fabrication

The epitaxial layers were grown by molecular beam epitaxy
(MBE) on SI–InP. The waveguide structure consisted of a large
InAlGaAs core with a thin bulk InAlGaAs ( nm)
active region and InAlGaAs cladding layers [17]. InAlGaAs
setback layers were incorporated to prevent dopant diffusion
into the active layer during MBE growth. Highly doped InGaAs
layers were used for the top and bottom p- and n-contact layers,
respectively.

A double mesa structure was fabricated by wet etching to
form an index-guided waveguide and allow access to the lower
InGaAs ohmic contact layer. To bury the waveguide, passivate
the sidewalls, reduce parasitic capacitance, and provide a
dielectric bridge to interconnect the CPW transmission line
with the top ohmic contact, photosensitive benzocyclobutane
(Photo-BCB) was spun-on and patterned by optical lithography
and subsequent development. It was hardcured in an oven set to
400 C for 30 min. To expose the top p-contact for self-aligned
metallization, the patterned Photo-BCB was dry etched with
CF : O (4 : 1) plasma. n- and p-type alloyed ohmic contacts
and the CPW transmission line were individually formed by
electron beam evaporation and liftoff process. Finally, a brief
rapid thermal annealing step was included to ensure activation
of the ohmic contacts.

III. EXPERIMENTAL RESULTS

A. B-EAM Electrical and Optical Characteristics

Fig. 3 shows the balanced-mode dc transfer curve for a
B-EAM with 9 250 m waveguide dimensions and the
– trace for each individual EAM. Both the normalized

transfer curve and– trace showed well-matched behavior.
The dark current level was 100 nA and the breakdown voltage
was 7 V. To measure the balanced mode dc transfer curve, an
external-cavity tunable laser (ECTL) (1550-nm wavelength and
0- dBm optical power incident on each EAM) and two dc power
supplies were required. Power supply 1 applied a 4-V reverse
bias between the CPW upper and lower ground conductors.
Power supply 2 was placed across the lower EAM and its
voltage was swept from 0 to 4 V. The resulting fiber-to-fiber
transmitted optical power was measured using an optical power
sensor. The balanced-mode dc transfer curve shows improved
complementary behavior than previously reported in [15]. The
0-V fiber-to-fiber insertion loss for the upper and lower EAM’s
was 14 dB, and the extinction ratio at 4-V bias was 8 dB.
Applying the definition given in [18], the equivalent for the
upper and lower EAMs was 8 V. It should be mentioned that the
current device has not been optimized for lowor insertion
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Fig. 3. B-EAM dc characteristics. (a) Normalized balanced-mode dc transfer
curve. (b)I–V curves of the upper and lower EAMs in a B-EAM with 9� 250
�m waveguides. Well-matched characteristics were observed.

Fig. 4. Electrical frequency response. A single-EAM in a B-EAM with 16�
300�m waveguides was tested. TheRC limited bandwidth was 310 MHz at
2-V bias.

loss. Due to accidental damage to the above-mentioned device,
we switched to a B-EAM with 16 300 m waveguides for
the remainder of the experiments. All system level experiments
and frequency response measurements were performed with the
wider waveguide B-EAM.

Fig. 4 depicts the parameter measured with a vector net-
work analyzer and lightwave test set for the lower arm of the
B-EAM. A shunt resistor or termination was not employed. Ten
dBm of optical power was incident on each EAM from the
ECTL. The measured electrical 3-dB bandwidth was 310 MHz
at 2-V bias. The low frequency response was caused by the large

Fig. 5. Balanced link testbed.

capacitance (calculated to be 3.8 pF per EAM) from the pair
of EAMs. Higher bandwidth can be achieved by reducing the
width and length of the EAMs.

B. B-EAM Link Test Bed

Fig. 5 illustrates the B-EAM experimental setup. The driving
microwave signals were pre-amplified and low-pass-filtered
prior to feeding the modulator. An optical delay line and
variable optical attenuator on the upper and lower output
arms compensated for RF phase and amplitude mismatch,
respectively. A 10-GHz balanced photodetector received the
modulated optical signals, and a 50-GHz spectrum analyzer
monitored them. This setup was also used to test Single-EAM
links by disconnecting one fiber arm to the balanced receiver.

A monolithic approach can be employed to reduce the trans-
mitter complexity and improve the phase stability of the link.
On the input side of the B-EAM, a DFB laser and a Y-branch
or multimode interference coupler may be employed.

On the output side, polarization multiplexing can be exploited
to reduce the fiber count to one. Polarization rotators, splitters,
and multiplexers have been monolithically integrated on InP
[19].

C. System Performance

To demonstrate RIN suppression, a DFB laser with 1543-nm
wavelength was employed as the optical source. The laser output
was amplified by an erbium-doped fiber amplifier (EDFA) and
filtered by an optical bandpass filter to remove excess ASE.
The bias on the DFB laser was adjusted to maximize the RIN
peak, which occurred at 910 MHz. The optical power was in-
creased until RIN dominated the noise floor. To verify this, the
optical power was increased by 3 dB, which resulted in a 6-dB
increase in the RIN spectrum. The bias on the modulator was set
to 0 V. Fig. 6 shows the measured RIN spectrum passing through
a Single-EAM and B-EAM. The total detected dc photocur-
rent for the Single-EAM and B-EAM links was 540A and
1.093 mA (including upper and lower arms), respectively. RIN
suppression greater than 10 dB from dc to 1 GHz was achieved
with the B-EAM link. At higher frequencies, fiber path length
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Fig. 6. RIN spectrum for the single and B-EAM’s links: in the B-EAM link,
RIN was suppressed by more than 10 dB from dc to 1 GHz.

Fig. 7. Simultaneous RIN and distortion suppression. (a) Single-EAM. (b)
B-EAM. The fundamental frequency was set to the RIN peak (910 MHz),
while the 2HD lied at 1.82 GHz. In the B-EAM link, the 2HD and RIN were
suppressed by 7.5 and 2 dB, respectively.

matching becomes more stringent. By improving the phase mis-
matches in the link, RIN suppression can be achieved over a
wider bandwidth.

To demonstrate simultaneous RIN and distortion suppression,
the B-EAM was modulated at the RIN peak (910 MHz). The
total incident optical and RF powers on the B-EAM were set
to 14 and 10 dBm, respectively. The third-order harmonic was
suppressed by adjusting the modulator’s bias voltage, while the
second-harmonic distortion (2HD) was suppressed by compen-
sating for any amplitude and phase mismatch with the optical
attenuator and delay line, respectively. Fig. 7 contains the spec-
trum analyzer traces showing the fundamental 910-MHz signal
and the 1.82-GHz 2HD for the Single-EAM and B-EAM links.

Fig. 8. Two-tone measurement. (a) Single-EAM. (b) B-EAM. In both cases,
f = 150 MHz, f � f = 30 MHz, and2f � f = 180 MHz. In the
B-EAM link, the second-order distortion(f � f ) was suppressed by 17 dB,
and assuming a thermal noise-limited noise floor (�174 dBm/Hz), we observed
20-dB improvement in SFDR.

In the balanced case, the 2HD and RIN were suppressed by 7.5
and 2 dB at the RIN peak, respectively. The device used in this
experiment had an insertion loss of 20 dB at 0-V bias. Much
higher RIN suppression can be achieved via optimization of the
fiber-to-fiber insertion loss through the B-EAM.

To examine the microwave linearity of the link, we performed
a two-tone measurement. One microwave synthesizer was set
to 120 MHz and the other to 150 MHz . These sig-
nals were pre-amplified and low-pass-filtered prior to driving
the modulator. We replaced the DFB laser with an ECTL set to
1550 nm. After optical amplification and bandpass filtering, the
laser power incident on the upper and lower EAM was 10 dBm.
The modulator bias was set to null the third-order distortion
and the link was balanced to suppress second-order distortions.
The total dc photocurrent in the Single-EAM and B-EAM links
was 4.5 A and 21.2 A (upper plus lower arm). An RF am-
plifier with 52 dB of gain was employed to amplify the de-
tected RF signals. Fig. 8 depicts the signal power plot of the
Single-EAM and B- EAM links. In both links, the intermodu-
lation distortion had a fifth-order RF power depen-
dence. Although in the B-EAM link, the second-order distortion

was suppressed by 17 dB, it limited the SFDR. As-
suming a thermal noise limited noise floor (174 dBm/Hz), the
broad-band SFDR was calculated to be 83 and 63 dBHz for
the B-EAM and Single-EAM links, respectively. Twenty deci-
bels of improvement in SFDR was observed for the B-EAM
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link over the Single-EAM link, while the actual improvement
due to the balanced link alone (assuming equal output RF signal
powers) was estimated to be 14.5 dB. Optimizing the B-EAM
for low insertion loss and improving the phase mismatches in
the experimental setup can result in much higher SFDR.

We modeled a B-EAM link using our previously reported
theory [16]. For a total received laser power of 10 mW, a RIN
level of 140 dBc/Hz, and a B-EAM with a of 0.5 V and
10-dB insertion loss, we predict that a shot-noise fifth-order dis-
tortion-limited SFDR of 130 dBHz can be achieved.

IV. CONCLUSION

Utilizing a novel balanced electroabsorption modulator, we
have successfully demonstrated, for the first time, simultaneous
suppression of second-order distortion, third-order distortion,
and laser RIN at the same modulator bias point. We have
reviewed the device principle and fabrication technique, and
performed both dc and RF characterization. A comparison
between Single-EAM and B-EAM links was provided to
highlight the innovative capabilities of the B-EAM. By biasing
the B-EAM at the third-order null and operating the link in
balanced mode, 7.5-dB suppression of second-order distortion,
and 2-dB suppression of laser RIN at the RIN peak (910 MHz)
was experimentally demonstrated. The two-tone measurement
showed 17-dB suppression of second-order distortion and
20-dB improvement in SFDR compared to the Single-EAM
link. With optimization of the device design to improve inser-
tion loss, , and bandwidth, as well as matching of the optical
path lengths in the experimental setup, ultrawide SFDR and
ultralow NF can be achieved.
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